(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=-1,
显然AB斜率存在且过F(0,1)
设其直线方程为y=kx+1,联立4y=x2消去y得:x2-4kx-4=0,
判别式△=16(k2+1)>0.
x1+x2=4k,x1x2=-4
于是曲线4y=x2上任意一点斜率为y'=,则易得切线AM,BM方程分别为y=()x1(x-x1)+y1,y=()x2(x-x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo==2k,yo==-1,即M(,-1)
从而,=(,-2),(x2-x1,y2-y1)
•=(x1+x2)(x2-x1)-2(y2-y1)=(x22-x12)-2[(x22-x12)]=0,(定值)命题得证.
这就说明AB⊥FM.
(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=|AB||FM|.
|FM|====+.
因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以
|AB|=|AF|+|BF|=y1+y2+2=λ++2=(+)2.
于是S=|AB||FM|=(+)3,
由+≥2知S≥4,且当λ=1时,S取得最小值4.