问题
填空题
已知 命题甲:函数f(x)=lg(ax2+ax+1)的定义域为(-∞,+∞);命题乙:函数g(x)=lg(x2-ax+1)的值域为(-∞,+∞).若上述两个命题同时为真命题,则实数a的取值范围为______.
答案
若甲真,则
或a=0,解得0≤a<4.a>0 a2-4a <0
若乙真,则(-a)2-4≥0,解得a≤-2或者a≥2.
因为两个命题为真命题,
所以实数a范围为:2≤a<4.
故答案为:2≤a<4