问题 解答题
数列{an}满足a1=1,a2=
3
2
,an+2=
3
2
an+1-
1
2
an(n∈N*
(1)记dn=an+1-an,求证:{dn}是等比数列;
(2)求数列{an}的通项公式;
(3)bn=3n-2,求数列{anbn}的前n项和Sn
答案

(1)∵a1=1,a2=

3
2

a2-a1=

1
2

又∴an+2-an+1=

1
2
an+1-
1
2
an

an+2-an+1
an+1-an
=
1
2
dn+1
1
2
dn

∴{an}是以

1
2
为首项,
1
2
为公比的等比数列

(2)由①得an+1-an=(

1
2
)n

∴an=a1+a2-a1+a3-a2+…+an-an-1

=1+

1
2
+
1
22
+…+
1
2n-1

=2-(

1
2
)n-1

(3)an-bn=(6n-4)-(3n-2) (

1
2
)n-1

Sn=2[1+4+…3n-2]-[1×

1
20
+4×
1
2
+…+(3n-2)
1
2n-1
]

Tn=1+4×

1
2
+7×
1
22
+…+(3n-2)×
1
2n-1

1
2
Tn=1×
1
2
+4×
1
22
+…+(3n-2)×
1
2n

①-②得

1
2
Tn=1+3×(
1
2
+
1
22
+…+
1
2n-1
)-(3n-2)×
1
2n

Tn=8-

3n+4
2n-1

Sn=3n2-n-8+

3n+4
2n-1

名词解释
问答题 简答题