问题
解答题
已知数列{an}的前n项和Sn满足:Sn=
(1)求{an}的通项公式; (2)设bn=
(3)在条件(2)下,设cn=2-(
|
答案
(1)∵S1=
(a1-1)(a为常数,且a≠0,a≠1),a a-1
∴当n≥2时,an=Sn-Sn-1=
an-a a-1
an-1,a a-1
化简得
=a(a≠0),an an-1
又∵当n=1时,a1=s1=a,即{an}是等比数列.
∴数列的通项公式an=a•an-1=an
(2)由(1)知,bn=
+1=2•
(an-1)a a-1 an
,(3a-1)an-2a an(a-1)
因{bn}为等比数列,则有b22=b1b3
∵b1=3,b2=
,b3=3a+2 a
,3a2+2a+2 a2
∴(
)2=3•3a+2 a
,3a2+2a+2 a2
解得a=
,再将a=1 3
代入得bn=3n成立,1 3
∴a=
.1 3
(3)证明:由(2)知an=(
)n,1 3
∴cn=2-
-1 1+(
)n1 3
=1-1 1-(
)n+11 3
+1-3n 3n+1 3n+1 3n+1-1
=
-1 3n+1
,1 3n+1-1
∵
<1 3n+1
,1 3n
>1 3n+1-1 1 3n+1
∴
-1 3n+1
<1 3n+1-1
-1 3n
,1 3n+1
∴cn<
-1 3n 1 3n+1
∴数列的前n和Tn=c1+c2+…+cn
<(
-1 3
) +(1 32
-1 32
) +…+(1 33
- 1 3n
)1 3n-1
=
-1 3
<1 3n+1 1 3