问题 解答题
已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在条件(2)下,设cn=2-(
1
1+an
+
1
1-an+1
)
,数列{cn}的前n项和为Tn.求证:Tn
1
3
答案

(1)∵S1=

a
a-1
(a1-1)(a为常数,且a≠0,a≠1),

∴当n≥2时,an=Sn-Sn-1=

a
a-1
an-
a
a-1
an-1

化简得

an
an-1
=a(a≠0),

又∵当n=1时,a1=s1=a,即{an}是等比数列.

∴数列的通项公式an=a•an-1=an

(2)由(1)知,bn=

2•
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
an(a-1)

因{bn}为等比数列,则有b22=b1b3

b1=3,b2=

3a+2
a
b3=
3a2+2a+2
a2

(

3a+2
a
)2=3•
3a2+2a+2
a2

解得a=

1
3
,再将a=
1
3
代入得bn=3n成立,

a=

1
3

(3)证明:由(2)知an=(

1
3
)n

cn=2-

1
1+(
1
3
)
n
-
1
1-(
1
3
)
n+1
=1-
3n
3n+1
+1-
3n+1
3n+1-1

=

1
3n+1
-
1
3n+1-1

1
3n+1
1
3n
1
3n+1-1
1
3n+1

1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1

cn

1
3n
-
1
3n+1

∴数列的前n和Tn=c1+c2+…+cn

<(

1
3
-
1
32
) +(
1
32
-
1
33
) +…+(
1
3n
1
3n-1
)

=

1
3
-
1
3n+1
1
3

选择题
单项选择题