问题
解答题
已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值为-1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是减函数,求实数λ的取值范围;
(3)设函数h(x)=log2[p-f(x)],若此函数在定义域范围内不存在零点,求实数p的取值范围.
答案
(1)设f(x)=ax(x+2),又a>0,f(-1)=-1,
∴a=1,
∴f(x)=x2+2x.(4分)
(2)∵g(x)=f(-x)-λf(x)+1,
∴g(x)=(1-λ)x2-2(1+λ)x+1,
①当λ=1时,g(x)=-4x=1在[-1,1]上是减函数,满足要求;
②当λ≠1时,对称轴方程为:x=
.1+λ 1-λ
ⅰ)当λ<1时,1-λ>0,所以
≥1,解得0≤λ<1;1+λ 1-λ
ⅱ)当λ>1时,1-λ<0,所以
≤-1,解得λ>1.1+λ 1-λ
综上,λ≥0.(7分)
(3)函数h(x)=log2[p-f(x)]在定义域内不存在零点,必须且只须有
p-f(x)>0有解,且p-f(x)=1无解.
即[p-f(x)]max>0,且1不在[p-f(x)]的值域内.
f(x)的最小值为-1,
∴函数y=p-f(x)的值域为(-∞,p+1].
∴
,解得-1<p<0.p+1>0 1>p+1
∴p的取值范围为(-1,0).(10分)