问题
解答题
数列{an}中,a1=1,an+1=
(1)求通项an; (2)令bn=
|
答案
(1)由an+1=
(n∈N*),得an an+1
=1 an+1
=an+1 an
+1,1 an
所以
-1 an+1
=1.1 an
所以
=11 a1
-1 a2
=11 a1
-1 a3
=11 a2
…
-1 an
=1.1 an-1
累加得
=n.1 an
∴an=
(n∈N*); 1 n
(2)由bn=
,2n an
∴Tn=1×21+2×22+…+n×2n
2Tn=1×22+2×23+…+n×2n+1.
两式相减得:-Tn=2+(22+23+…+2n)-n×2n+1
=
-n×2n+12×(1-2n) 1-2
=(1-n)×2n+1-2∴Tn=(n-1)×2n+1+2