问题 解答题
数列{an}中,a1=1,an+1=
an
an+1
(n∈N*)

(1)求通项an
(2)令bn=
2n
an
,求数列{bn}的前n项和Tn
答案

(1)由an+1=

an
an+1
(n∈N*),得

1
an+1
=
an+1
an
=
1
an
+1,

所以

1
an+1
-
1
an
=1.

所以

1
a1
=1

1
a2
-
1
a1
=1

1
a3
-
1
a2
=1

1
an
-
1
an-1
=1.

累加得

1
an
=n.

an=

1
n
(n∈N*); 

(2)由bn=

2n
an

Tn=1×21+2×22+…+n×2n

2Tn=1×22+2×23+…+n×2n+1

两式相减得:-Tn=2+(22+23+…+2n)-n×2n+1

=

2×(1-2n)
1-2
-n×2n+1

=(1-n)×2n+1-2∴Tn=(n-1)×2n+1+2

单项选择题
单项选择题