问题
解答题
已知数列{an}的前n项和为Sn,a1=1,an+1=
(1)求证:数列{
(2)求an. |
答案
(1)证明:∵an+1=
Sn,∴Sn+1-Sn=n+2 n
Snn+2 n
∴Sn+1=
Sn2n+2 n
∴
=2Sn+1 n+1 Sn n
∵a1=1,∴
=1S1 1
∴数列{
}是以1为首项,2为公比的等比数列;Sn n
(2)由(1)知,
=2n-1Sn n
∵an+1=
Sn,∴an+1=(n+2)•2n-1n+2 n
∴an=(n+1)•2n-2(n≥2)
∵a1=1,∴也符合上式
∴an=(n+1)•2n-2