问题
解答题
已知数列{an}满足条件:a1=t,an+1=2an+1. (I)判断数列{an+1}是否为等比数列; (Ⅱ)若t=1,令cn=
证明: (i)cn=
(ii)Tn<1. |
答案
解(I)由题意可得,an+1+1=2an+2=2(an+1)
∵a1+1=t+1
∴当t=-1时,数列{an+1}不是等比数列
当t≠-1时,数列{an+1}是以t+1为首项,以2为公比的等比数列;
(II)当t=1时,由(I)知an+1=2•2n-1
∴an=2n-1
∴Cn=
=2n anan+1
=2n (2n-1)(2n+′1-1)
-1 2n-1
=1 2n+1-1
-1 an 1 an+1
∴Tn=1-
+1 3
-1 3
+…+(1 7
-1 2n-1
)1 2n+1-1
=1-
<11 2n+1-1