问题 解答题
已知数列{an}满足条件:a1=t,an+1=2an+1.
(I)判断数列{an+1}是否为等比数列;
(Ⅱ)若t=1,令cn=
2
anan+1
,记Tn=c1+c2+c3+…+cn

证明:
(i)cn=
1
an
-
1
an+1

(ii)Tn<1.
答案

解(I)由题意可得,an+1+1=2an+2=2(an+1)

∵a1+1=t+1

∴当t=-1时,数列{an+1}不是等比数列

当t≠-1时,数列{an+1}是以t+1为首项,以2为公比的等比数列;

(II)当t=1时,由(I)知an+1=2•2n-1

an=2n-1

Cn=

2n
anan+1
=
2n
(2n-1)(2n+′1-1)
=
1
2n-1
-
1
2n+1-1
=
1
an
-
1
an+1

Tn=1-

1
3
+
1
3
-
1
7
+…+(
1
2n-1
-
1
2n+1-1
)

=1-

1
2n+1-1
<1

填空题
判断题