问题
解答题
(文科)已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n-1(nϵN*) (1)设bn=an+2n(nϵN*),证明数列{bn}是等比数列; (2)设 Cn=
|
答案
(1)证明:∵an+1=2Sn+2n+1-1(n≥1),
当n≥2时,an=2Sn-1+2n-1,两式相减得an+1=3an+2n(n≥2).
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2).
∵S2=3S1+22-1,即a1+a2=3a1+3,∴a2=2a1+3=5,
∴b2≠0,bn≠0,
∴
=b2 b1
=a2+4 a1+2
=3.故9 3
=3(n=1,2,3…)bn+1 bn
∴数列{bn}是公比为3,首项为3的等比数列.
(2)由(1)知,bn=3•3n-1=3n,bn=an+2n得an=3n-2n,
∴cn=
=2n (1+3n-an)(1+3n+1-an+1)
,2n (1+2n)(1+2n+1)
则cn=
=2n (1+2n)(1+2n+1)
-1 1+2n
.1 1+2n+1
∴c1+c2+…+cn=
-1 1+21
+1 1+22
-1 1+22
+…+1 1+23
-1 1+2n 1 1+2n+1
=
-1 3
.1 1+2n+1