问题 解答题
(文科)已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n-1(nϵN*
(1)设bn=an+2n(nϵN*),证明数列{bn}是等比数列;
(2)设 Cn=
2n
(1+3n-an)(1+3n+1-an+1)
(n∈N*),求Tn=c1+c2+…+cn
答案

(1)证明:∵an+1=2Sn+2n+1-1(n≥1),

当n≥2时,an=2Sn-1+2n-1,两式相减得an+1=3an+2n(n≥2).

从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2).

∵S2=3S1+22-1,即a1+a2=3a1+3,∴a2=2a1+3=5,

∴b2≠0,bn≠0,

b2
b1
=
a2+4
a1+2
=
9
3
=3.故
bn+1
bn
=3
(n=1,2,3…)

∴数列{bn}是公比为3,首项为3的等比数列.

(2)由(1)知,bn=3•3n-1=3n,bn=an+2n得an=3n-2n

cn=

2n
(1+3n-an)(1+3n+1-an+1)
=
2n
(1+2n)(1+2n+1)

cn=

2n
(1+2n)(1+2n+1)
=
1
1+2n
-
1
1+2n+1

c1+c2+…+cn=

1
1+21
-
1
1+22
+
1
1+22
-
1
1+23
+…+
1
1+2n
-
1
1+2n+1

=

1
3
-
1
1+2n+1

填空题
阅读理解与欣赏