问题 解答题

(本题满分12分)

在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.

(1)求抛物线C的标准方程;

(2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.

答案

(1) y2=2x (2)关键证明AB的中点到准线的距离等于AB的一半。

题目分析:解:(1)设抛物线y2=2px(p>0),将点(2,2)代入得p=1.

∴y2=2x为所求抛物线的方程.

(2)证明:设lAB的方程为:x=ty+,代入y2=2x得:y2-2ty-1=0,设AB的中点为M(x0,y0),则y0=t,x0.

∴点M到准线l的距离d=x0=1+t2.又AB=2x0+p=1+2t2+1=2+2t2,∴d=AB,故以AB为直径的圆与准线l相切.

点评:求抛物线的方程,前提是设抛物线的方程,而设置抛物线可结合焦点,像本题通过画图,知道抛物线的焦点在x轴的正半轴上,因而可令抛物线的方程为y2=2px(p>0)(式子中的x 对应x轴,2px前面是正的对应正半轴)。第二题涉及直线与抛物线这两种曲线,当两者相交时,常常在联立方程组后,用到根与系数的关系式:

单项选择题
单项选择题