问题 解答题
已知数列{an},{cn}满足条件:a1=1,an+1=2an+1,cn=
1
(2n+1)(2n+3)

(1)若bn=an+1,并求数列{bn}的通项公式;
(2)数列{cn}的前n项和Tn,求数列{(2n+3)Tn•bn}前n项和Qn
答案

(1):∵a1=1,an+1=2an+1,

∴an+1+1=2(an+1)

an+1+1
an+1
=2且a1+1=2

∵bn=an+1,

bn+1
bn
=2且b1=2

∴{bn}是以2为首项以2为公比的等比数列

bn=2n

(2)∵cn=

1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

∴Tn=b1+b2+…+bn=

1
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n+1
-
1
2n+3
)

=

1
2
(
1
3
-
1
2n+3
)=
n
2n+3

∴(2n+3)Tn•bn=n•2n

Qn=1•2+2•22+…+n•2n

2Qn=1•22+2•23+…+(n-1)•2n+n•2n+1

两式相减可得,-Qn=2+22+…+2n-n•2n+1=

2(1-2n)
1-2
-n•2n+1=(2-n)•2n+1-2

Qn=(n-2)•2n+1+2

口语交际,情景问答题
单项选择题