问题
解答题
已知数列{an},{cn}满足条件:a1=1,an+1=2an+1,cn=
(1)若bn=an+1,并求数列{bn}的通项公式; (2)数列{cn}的前n项和Tn,求数列{(2n+3)Tn•bn}前n项和Qn. |
答案
(1):∵a1=1,an+1=2an+1,
∴an+1+1=2(an+1)
∴
=2且a1+1=2an+1+1 an+1
∵bn=an+1,
∴
=2且b1=2bn+1 bn
∴{bn}是以2为首项以2为公比的等比数列
∴bn=2n
(2)∵cn=
=1 (2n+1)(2n+3)
(1 2
-1 2n+1
)1 2n+3
∴Tn=b1+b2+…+bn=
(1 2
-1 3
+1 5
-1 5
+…+1 7
-1 2n+1
)1 2n+3
=
(1 2
-1 3
)=1 2n+3 n 2n+3
∴(2n+3)Tn•bn=n•2n
∴Qn=1•2+2•22+…+n•2n
2Qn=1•22+2•23+…+(n-1)•2n+n•2n+1
两式相减可得,-Qn=2+22+…+2n-n•2n+1=
-n•2n+1=(2-n)•2n+1-22(1-2n) 1-2
∴Qn=(n-2)•2n+1+2