问题 填空题

设{an}是正项等比数列,令Sn=lga1+lga2+…+lgan,n∈N*,若存在互异的正整数m,n,使得Sm=Sn,则Sm+n=______.

答案

∵{an}是正项等比数列,设公比为q,

∴lgan+1-lgan=lgq

∴数列{lgan}为等差数列,

设公差为d

则Sm=mlga1+

m(m-1)d
2
,Sn=nlga1+
n(n-1)d
2

∵Sm=Sn

∴Sm-Sn=mlga1+

m(m-1)d
2
-nlga1-
n(n-1)d
2
=(m-n)(lga1+
m+n-1
2
d
)=0

∵m≠n

∴lga1+

m+n-1
2
d)=0

∴Sm+n=(m+n)lga1+

(m+n)(m+n-1)d
2
=(m+n)(lga1+
m+n-1
2
d
)=0

故答案为0.

单项选择题 B型题
选择题