问题
解答题
已知函数f(x)=x2+x-6,g(x)=2x+1,α、β是方程f(x)=0的两个根(α>β). (1)求α、β的值; (2)数列{an}满足:a1=1,an+1=g(an),求an; (3)数列{an}满足:a1=3,an+1=an-
|
答案
(1)由x2+x-6=0,可得x=2或-3,
∵α、β是方程f(x)=0的两个根(α>β),∴α=2,β=-3;
(2)∵g(x)=2x+1,∴an+1=g(an)=2an+1
∴an+1+1=2(an+1)
∵a1=1,
∴{an+1}是以2为首项,2为公比的等比数列
∴an+1=2n,即an=2n-1;
(3)证明:an+1=an-
=f(an) g(an) an2+6 2an+1
∴an+1+3=
+3=an2+6 2an+1
,an+1-2=(an+3)2 2an+1 (an-2)2 2an+1
∴bn=ln
=lnan-β an-α
=2lnan+3 an-2
=2bn-1an-1+3 an-1-2
∴{bn)是首项为ln
=ln6,公比为2的等比数列a1+3 a1-2
∴{bn}的前n项和Sn=
=(2n-1)ln6.(1-2n)ln6 1-2