问题 解答题
已知数列{an}满足:a1=
1
4
,a2=
3
4
,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.
答案

(Ⅰ)2an=an+1+an-1(n≥2,n∈N*)∴{an}是等差数列.

又a1=

1
4
,a2=
3
4

∴an=

1
4
+(n-1)-
1
2
=
2n-1
4

bn=

1
3
bn-1+
n
3
(n≥2,n∈N*),

∴bn+1-an+1=

1
3
bn+
n+1
3
-
2n+1
4
=
1
3
bn
-
2n-1
12
=
1
3
(bn-
2n-1
4
)=
1
3
(bn-an).

又∵b1-a1=b1-

1
4
≠0

∴{bn-an}是以b1-

1
4
为首项,以
1
3
为公比的等比数列.

(Ⅱ)bn-an=(b1-

1
4
)•(
1
3
)
n-1
an=
2n-1
4
,bn=(b1-
1
4
(
1
3
)
n-1
+
2n-1
4

当n≥2时bn-bn-1=

1
2
-
2
3
(b1-
1
4
1
3
n-2

又b1<0,∴bn-bn-1>0

∴{bn}是单调递增数列.

(Ⅲ)∵当且仅当n=3时,Sn取最小值.

b3<0
b4>0

5
4
+(b1-
1
4
)(
1
3
)
2
 < 0
7
4
+(b1-
1
4
(
1
3
)
3
> 0

∴b1∈(-47,-11).

单项选择题
填空题