已知数列{an}满足:a1=
(Ⅰ)求证:数{bn-an}为等比数列; (Ⅱ)求证:数列{bn}是单调递增数列; (Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围. |
(Ⅰ)2an=an+1+an-1(n≥2,n∈N*)∴{an}是等差数列.
又a1=
,a2=1 4
,3 4
∴an=
+(n-1)-1 4
=1 2 2n-1 4
bn=
bn-1+1 3
(n≥2,n∈N*),n 3
∴bn+1-an+1=
bn+1 3
-n+1 3
=2n+1 4
bn-1 3
=2n-1 12
(bn-1 3
)=2n-1 4
(bn-an).1 3
又∵b1-a1=b1-
≠01 4
∴{bn-an}是以b1-
为首项,以1 4
为公比的等比数列.1 3
(Ⅱ)bn-an=(b1-
)•(1 4
)n-1an=1 3
,bn=(b1-2n-1 4
)•(1 4
)n-1+1 3
.2n-1 4
当n≥2时bn-bn-1=
-1 2
(b1-2 3
)1 4
n-21 3
又b1<0,∴bn-bn-1>0
∴{bn}是单调递增数列.
(Ⅲ)∵当且仅当n=3时,Sn取最小值.
∴b3<0 b4>0
即
,
+(b1-5 4
)(1 4
)2 < 01 3
+(b1-7 4
) (1 4
)3> 01 3
∴b1∈(-47,-11).