问题 解答题

已知数列{an}满足:a1=1,an+1=2an+n+1,n∈N*

(Ⅰ)若数列{an+pn+q}是等比数列,求实数p、q的值;

(Ⅱ)若数列{an}的前n项和为Sn,求an和Sn

(Ⅲ)试比较an与(n+2)2的大小.

答案

(Ⅰ)设

an+1+p(n+1)+q
an+pn+q
=m对任意n∈N*都成立.

得an+1+p(n+1)+q=man+mpn+mq.(2分)

又an+1=2an+n+1,

则2an+n+1+pn+p+q=man+mpn+mq,

即(2-m)an+(p+1-mp)n+p+1+q-mq=0.

由已知可得an>0,

所以

2-m=0
p+1-mp=0
p+1+q-mq=0
.解得
m=2
p=1
q=2
.
(5分)

则存在常数p=1,q=2使数列{an+pn+q}为等比数列.(6分)

(Ⅱ)由(Ⅰ)得an+n+2=4•2n-1

则an=2n+1-n-2.(8分)

所以Sn=a1+a2++an=22+23++2n+1-(3+4++n+2)=

22(2n-1)
2-1
-
n(n+5)
2
=2n+2-4-
n2+5n
2
.(10分)

(Ⅲ)当n=1时,a1=1,(1+2)2=9,则a1<9;

当n=2时,a2=4,(2+2)2=16,则a2<16;

当n=3时,a3=11,(3+2)2=25,则a3<25;

当n=4时,a4=26,(4+2)2=36,则a4<36;

当n=5时,a5=57,(5+2)2=49,则a5>49;(11分)

当n≥5时,要证an>(n+2)2⇔2n+1-n-2>(n+2)2⇔2n+1>n2+5n+6.

而2n+1=Cn+10+Cn+11+Cn+12++Cn+1n+1≥2(Cn+10+Cn+11+Cn+12)+Cn+13

=2+2(n+1)+n(n+1)+

(n-1)•n•(n+1)
6

≥2+2(n+1)+n(n+1)+(n-1)•n(∵n+1≥6)

=(n2+5n+6)+[n(n-3)-2]>n2+5n+6.

所以当n≥5时,an>(n+2)2.(13分)

因此当1≤n≤4(n∈N*)时,an<(n+2)2;当n≥5(n∈N*)时,an>(n+2)2.(14分)

问答题 简答题
填空题