问题
解答题
设同时满足条件:①
(1)求{an}的通项公式; (2)设bn=
|
答案
(1)因为S1=
(a1-1),所以a1=aa a-1
当n≥2时,an=Sn-Sn-1=
an-a a-1
an-1a a-1
=a,即{an}以a为首项,a为公比的等比数列.an an-1
∴an=a•an-1=an; …(4分)
(2)由(1)知,bn=
+1=2×
(an-1)a a-1 an
,(3a-1)an-2a (a-1)an
若{bn}为等比数列,则有b22=b1•b3,而b1=3,b2=
,b3=3a+2 a 3a2+2a+2 a2
故(
)2=3•3a+2 a
,解得a=3a2+2a+2 a2
…(7分)1 3
再将a=
代入得:bn=3n,其为等比数列,所以a=1 3
成立…(8分)1 3
由于①
=
+1 bn 1 bn+2 2
>
+1 3n 1 3n+2 2
=2
•1 3n 1 3n+2 2
=1 3n+1
…(10分)1 bn+1
(或做差更简单:因为
-
+1 bn 1 bn+2 2
=1 bn+1
-5 3n+2
=1 3n+1
>0,所以2 3n+2
≥
+1 bn 1 bn+2 2
也成立)1 bn+1
②
=1 bn
≤1 3n
,故存在M≥1 3
;1 3
所以符合①②,故{
}为“嘉文”数列…(12分)1 bn