问题
解答题
已知数列{ax}和{bx}满足:a=1,a1=2,a2>0,bx=
a为公比的等比数列. (Ⅰ)证明:aa+2=a1a2; (Ⅱ)若a3n-1+2a2,证明数例{cx}是等比数例; (Ⅲ)求和:
|
答案
(I)证:由
=q,有bn+1 bn
=an+1an+2 anan+1
=q,∴an+2=anq2(n∈N*).an+2 an
(II)证:∵an=qn-2q2,∴a2n-1=a2n-3q2═a1q2n-2,a2n=a2n-2q2═a2qn-2,∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2.∴{cn}是首项为5,以q2为公比的等比数列.
(III)由(II)得
=1 a2n-1
q2-2n,1 a1
=1 a2n
q2-2n,于是1 a2
+1 a1
++1 a2
=(1 a2n
+1 a1
++1 a3
)+(1 a2n-1
+1 a2
++1 a4
)=1 a2n
(1+1 a1
+1 q2
++1 q4
)+1 q2n-2
(1+1 a2
+1 q2
++1 q4
)=1 q2n-2
(1+3 2
+1 q2
++1 q1
).1 q2n-2
当q=1时,
+1 a1
++1 a2
=1 a2n
(1+3 2
+1 q2
++1 q4
)=1 q2n-2
n.3 2
当q≠1时,
+1 a1
++1 a2
=1 a2n
(1+3 2
+1 q2
++1 q4
)=1 q2n-2
(3 2
)=1-q-2n 1-q-2
[3 2
].q2n-1 q2n-2(q2-1)
故
+1 a1
++1 a2
=1 a2n
n,q=13 2
[3 2
],q≠1.q2n-1 q2n-2(q2-1)