问题 解答题
观察下列等式
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=______.
(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2012×2013
=______;
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______.
(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014
答案

(1)

1
n
-
1
n+1

(2)①原式=1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2012
-
1
2013
=1-
1
2013
=
2012
2013

②原式═1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

(3)原式=

1
4
1
1×2
+
1
2×3
+
1
3×4
+…+
1
1006×1007

=

1
4
(1-
1
1007

=

503
2014

故答案为

1
n
-
1
n+1
2012
2013
n
n+1

多项选择题
单项选择题