问题
解答题
已知函数f(x)=3x2+12x-15.
(1)求f(x)的零点;(2)求f(x)在[-3,3]上的最值;(3)证明f(x)在[-2,+∞)上是增函数.
答案
(1)令f(x)=3x2+12x-15=0
得:x=-5或x=1
∴f(x)的零点为-5,1.
(2)f(x)=3x2+12x-15=3(x2+4x-5)=3(x+2)2-27,
f(x)对称轴为x=-2,
∴f(x)在[-3,3]上的最小值为f(-2)=-27,
最大值为f(3)=48;
(3)设x1,x2∈[-2,+∞)且x1<x2
则f(x2)-f(x1)=3(x22-x21)+12(x2-x1)
=3(x2-x1)(x2+x1+4)
∵x1,x2∈[-2,+∞)且x1<x2
∴x2-x1>0,x2+x1+4>0
∴3(x2-x1)(x2+x1+4)>0
∴f(x2)-f(x1)>0
∴f(x)在[-2,+∞)上是增函数.