问题 解答题
已知数列{an}的前n项和为Sn,且Sn=
2-qan
1-q
(n∈N*)其中q为非零常数,函数f(x)=
1
2
x2+2x-
1
2
,数列{bn}满足bn+1=f′(bn),(n∈N*),b1=f(1),设cn=
1
12
anbn
,{bn}的前n项和为TnBn=
1
T1
+
1
T2
+…+
1
Tn
,求An=c1+c2+…+cn
(Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)当q=
1
3
时,试比较f(
4
3
An)
与f(Bn)的大小,并说明理由.
答案

(Ⅰ)Sn=

2-qan
1-q
⇒(1-q)Sn=2-qan且q≠1

当n=1时,(1-q)S1=2-qa1⇒a1=2

当n≥2时,(1-q)Sn-(1-q)Sn-1=qan-1-qan⇒an=qan-1

∴{an}是以2为首项,公比为q的等比数列.

(Ⅱ) 当q=

1
3
时,由(1)得 an=2(
1
3
)
n-1

又 f(x)=

1
2
x2+2x-
1
2
,∴f′(x)=x+2

由bn+1=f′(bn)得bn+1=f′(bn)=bn+2

∴{bn}是以2为首项,公差为2的等差数列,

故bn=2n

∴cn=

1
12
anbn=n(
1
3
)n     Tn=
n(b1+bn)
2
=n(n+1),

Bn=

1
T1
+
1
T2
+…+
1
Tn
=
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1

An=c1+c2+…+cn=1•

1
3
+2(
1
3
)
2
+…+n(
1
3
)
n
…①

1
3
An=1•(
1
3
)2+2(
1
3
)3+3(
1
3
)4+…+(n-1)(
1
3
)n+n(
1
3
)n+1…②

①-②得∴

2
3
An=1•(
1
3
)1+(
1
3
)2+(
1
3
)3+…+(
1
3
)n-n(
1
3
)n+1

=

1
3
(1-
1
3n
)
1-
1
3
-n(
1
3
)n+1=
1-
1
3n
2
-n(
1
3
)n+1

4
3
An=1-
1
3n
-
2n
3
1
3n

4
3
An-Bn=1-
1
3n
-
2n
3
1
3n
-1+
1
n+1
=
1
n+1
-
2n+3
3n+1
=
3n+1-(2n2+5n+3)
(n+1)•3n+1

当n=1时,

4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
=
9-10
18
<0

4
3
AnBn

当n≥2时,

令g(x)=3x+1-(2x2+5x+3)

则g′(x)=3x+1ln3-(4x+5),g(x)=3x+1(ln3)2-4在[2,+∞)上为单调增函数,

∴g(x)=3x+1(ln3)2-4≥33(ln3)2-4>0

∴g′(x)=3x+1ln3-(4x+5)在[2,+∞)上为单调增函数,

g′(x)=3x+1ln3-(4x+5)≥33ln3-9>27-9>0

g(x)=3x+1-(2x2+5x+3)在[2,+∞)上为单调增函数,

∴当n≥2时,g(n)=3n+1-(2n2+5n+3)≥33-(2×4+10+3)>0

即当n≥2时,

4
3
An-Bn=
3n+1-(2n2+5n+3)
(n+1)•3n+1
>0

∴当n≥2时,

4
3
AnBn

又f′(x)=x+2>0对x≥0恒成立,

∴f(x)在[0,+∞)上单调递增,

∴当n=1时f(

4
3
An)<f(Bn

当n≥2时f(

4
3
An)>f(Bn).

单项选择题
判断题