已知数列{an}的前n项和为Sn,满足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)写出数列{an}的前三项a1,a2,a3;
(Ⅱ)求证:数列{an-2n+1}为等比数列;
(Ⅲ)求Sn.
(Ⅰ)由Sn=2an+n2-4n,
当n=1时,a1=2a1+1-4,可得a1=3.an+1=Sn+1-Sn=2an+1+(n+1)2-4(n+1)-2an-n2+4n,
可得an+1=2an-2n+3.
可得a2=7,a3=13.
(Ⅱ)由an+1=2an-2n+3可得,
=an+1-2(n+1)+1 an-2n+1
=2an-2n+3-2(n+1)+1 an-2n+1
=2.2an-4n+2 an-2n+1
又a1-2×1+1=2.
所以数列{an-2n+1}是首项为2,公比为2的等比数列.
(Ⅲ)由(Ⅱ)可得,an-2n+1=2n.
所以an=2n-1+2n.
又Sn=2an+n2-4n,
可得Sn=2n+1+n2-2.