问题 解答题
已知数列{an}满足a1=2,an+1=2an-n+1(n∈N+).
(1)证明数列{an-n}是等比数列,并求出数列{an}的通项公式;
(2)数列{bn}满足:bn=
n
2an-2n
(n∈N+),求数列{bn}的前n项和Sn
(3)比较Sn
3n
2n+1
的大小.
答案

(1)证法一:由an+1=2an-n+1,

得an+1-(n+1)=2(an-n),

又a1=2,则a1-1=1,

∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)

an-n=1×2n-1

an=2n-1+n.…(4分)

证法二:

an+1-(n+1)
an-n
=
2an-n+1-(n+1)
an-n

=

2an-2n
an-n
=2,

又a1=2,则a1-1=1,

∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)

an-n=1×2n-1,∴an=2n-1+n.…(4分)

(2)∵bn=

n
2an-2n

bn=

n
2an-2n
=
n
2n
.…(5分)

∴Sn=b1+b2+…+bn

=

1
2
+2•(
1
2
)2+…+n•(
1
2
)
n
,…①

1
2
Sn=(
1
2
)
2
+2•(
1
2
)
3
+…+(n-1)(
1
2
)
n
+n•(
1
2
)
n+1
,…②

由①-②,得

1
2
Sn=
1
2
+(
1
2
)
2
+…+(
1
2
)2-n•(
1
2
)
n+1

=

1
2
[1-(
1
2
)
n
]
1-
1
2
-n•(
1
2
)n+1

=1-(n+2)(

1
2
)n+1,…(8分)

Sn=2-(n+2)•(

1
2
)n.…(9分)

(3)Sn-

3n
2n+1
=2-(n+2)(
1
2
)
n
-
3n
2n+1

=

n+2
2n+1
-(n+2)•(
1
2
)
n

=

(n+2)•[2n-(2n+1)]
(2n+1)•2n

当n=1时,Sn

3n
2n+1

n=2时,Sn

3n
2n+1

n≥3时,2n=

C0n
+
C1n
+…+
Cn-1n
+
Cnn

C0n
+
C1n
+
Cn-1n
=2n+1,

Sn-

3n
2n+1
>0,

Sn

3n
2n+1

综上:n=1或2时,Sn

3n
2n+1

n≥3时,Sn

3n
2n+1
.…(12分)

选择题
单项选择题