问题
填空题
已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为______.
答案
∵M是抛物线y2=4x上的点
∴准线:x=-1
过点M作MN⊥准线与N
∵|MN|=|MF|
∴|MA|+|MF|=|MA|+|MN|
∵A在圆C:(x-4)2+(y-1)2=1,圆心C(4,1),半径r=1
∴当N,M,C三点共线时
|MA|+|MF|最小
∴(|MA|+|MF|)min=(|MA|+|MN|)min
=|CN|-r=5-1=4
∴(|MA|+|MF|)min=4
故答案为4