问题 解答题
等差数列{ an}中a3=7,a1+a2+a3=12,记Sn为{an}的前n项和,令bn=anan+1,数列{
1
bn
}的前n项和为Tn
(1)求an和Sn
(2)求证:Tn
1
3

(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
答案

(1)设数列{an}的公差为d,

由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,

解得a1=1,d=3,

∴an=3n-2,

Sn=n+

n(n-1)
2
×3=
3n2-n
2

(2)∵bn=anan+1=(3n-2)(3n+1),

1
bn
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Tn=

1
3
(1-
1
4
+
1
4
-
1
7
+
1
7
-
1
11
+…+
1
3n-5
-
1
3n-2
+
1
3n-2
-
1
3n+1
)

=

1
3
(1-
1
3n+1
)<
1
3

(3)由(2)知,Tn=

n
3n+1
,∴T1=
1
4
Tm=
m
3m+1
Tn=
n
3n+1

∵T1,Tm,Tn成等比数列,

(

m
3m+1
)2=
1
4
×
n
3n+1

6m+1
m2
=
3n+4
n

当m=1时,7=

3n+4
n
,n=1,不合题意;

当m=2时,

13
4
=
3n+4
n
,n=16,符合题意;

当m=3时,

19
9
=
3n+4
n
,n无正整数解;

当m=4时,

25
16
=
3n+4
n
,n无正整数解;

当m=5时,

31
25
=
3n+4
n
,n无正整数解;

当m=6时,

37
36
=
3n+4
n
,n无正整数解;

当m≥7时,m2-6m-1=(m-3)2-10>0,

6m+1
m2
<1,而
3n+4
n
=3+
4
n
>3

所以,此时不存在正整数m,n,且7<m<n,使得T1,Tm,Tn成等比数列.

综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.

单项选择题
单项选择题