问题
解答题
已知点(x,y)是区域
(Ⅰ)证明:数列{an-2}为等比数列; (Ⅱ)求数列{Sn}的前n项和Tn. |
答案
(Ⅰ)证明:由已知当直线过点(2n,0)时,目标函数取得最大值,故zn=2n
∴方程为x+y=2n
∵(Sn,an)在直线zn=x+y上,∴Sn+an=2n①
∴Sn-1+an-1=2(n-1),n≥2②
由①-②得,2an-an-1=2,n≥2∴2an=an-1+2,n≥2,
∴2(an-2)=an-1-2,n≥2
∵a1-2=-1,
∴数列{an-2}以-1为首项,
为公比的等比数列1 2
(Ⅱ)由(Ⅰ)得an-2=-(
)n-1,∴an=2-(1 2
)n-11 2
∵Sn+an=2n,
∴Sn=2n-an=2n-2+(
)n-11 2
∴Tn=[0+(
)0]+[2+(1 2
)]+…+[2n-2+(1 2
)n-1]1 2
=[0+2+…+(2n-2)]+[(
)0+(1 2
)+…+(1 2
)n-1]1 2
=
+n(2n-2) 2
=n2-n+2-(1-(
)n1 2 1- 1 2
)n-1.1 2