已知数列{xn}满足x1=x2=1并且
(1)若x1、x3、x5成等比数列,求参数λ的值; (2)设0<λ<1,常数k∈N*且k≥3,证明
|
(1)由已知x1=x2=1,且
=λx3 x2
⇒x3=λ,x2 x1
=λx4 x3
⇒x4=λ3,x3 x2
=λx5 x4
⇒x5=λ6.x4 x3
若x1、x3、x5成等比数列,
则x32=x1x5,即λ2=λ6.而λ≠0,
解得λ=±1.
(2)证明:设an=
,由已知,数列{an}是以xn+1 xn
=1为首项、λ为公比的等比数列,x2 x1
故
=λn-1,xn+1 xn
则
=xn+k xn
.xn+k xn+k-1 xn+k-1 xn+k-2
=λn+k-2.λn+k-3λn-1xn+1 xn
λkn+
.k(k-3) 2
因此,对任意n∈N*,
+x1+k x1
++x2+k x2
=λk+xn+k xn
+λ2k+k(k-3) 2
++λkn+k(k-3) 2
=λk(k-3) 2
(λk+λ2k++λnk)k(k-3) 2
=λk(k-3) 2
.λk(1-λnk) 1-λk
当k≥3且0<λ<1时,0<λ
≤1,0<1-λnk<1,k(k-3) 2
所以
+x1+k x1
++x2+k x2
<xn+k xn
(n∈N*).λk 1-λk