问题 解答题
已知数列{xn}满足x1=x2=1并且
xn+1
xn
xn
xn-1
,(λ
为非零参数,n=2,3,4,…).
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)设0<λ<1,常数k∈N*且k≥3,证明
x1+k
x1
+
x2+k
x2
+…+
xn+k
xn
λk
1-λk
(n∈N*).
答案

(1)由已知x1=x2=1,且

x3
x2
x2
x1
x3=λ,
x4
x3
x3
x2
x4=λ3
x5
x4
x4
x3
x5=λ6.

若x1、x3、x5成等比数列,

则x32=x1x5,即λ26.而λ≠0,

解得λ=±1.

(2)证明:设an=

xn+1
xn
,由已知,数列{an}是以
x2
x1
=1
为首项、λ为公比的等比数列,

xn+1
xn
=λn-1

xn+k
xn
=
xn+k
xn+k-1
.
xn+k-1
xn+k-2
xn+1
xn
n+k-2.λn+k-3λn-1

λkn+

k(k-3)
2
.

因此,对任意n∈N*

x1+k
x1
+
x2+k
x2
++
xn+k
xn
=λk+
k(k-3)
2
+λ2k+
k(k-3)
2
++λkn+
k(k-3)
2
=λ
k(k-3)
2
(λk+λ2k++λnk)

=λ

k(k-3)
2
λk(1-λnk)
1-λk
.

当k≥3且0<λ<1时,0<λ

k(k-3)
2
≤1,0<1-λnk<1,

所以

x1+k
x1
+
x2+k
x2
++
xn+k
xn
λk
1-λk
(n∈N*).

问答题
选择题