问题
解答题
设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-
(Ⅰ)求实数a,b的值 (Ⅱ)求函数f(x)的极值. |
答案
(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b
从而f′(x)=6(x+
)2+b-a 6
,即y=f′(x)关于直线x=-a2 6
对称,a 6
从而由条件可知-
=-a 6
,解得a=31 2
又由于f′(x)=0,即6+2a+b=0,解得b=-12
(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2-12x+1
f′(x)=6x2+6x-12=6(x-1)(x+2)
令f′(x)=0,得x=1或x=-2
当x∈(-∞,-2)时,f′(x)>0,f(x)在(-∞,-2)上是增函数;
当x∈(-2,1)时,f′(x)<0,f(x)在(-2,1)上是减函数;
当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数.
从而f(x)在x=-2处取到极大值f(-2)=21,在x=1处取到极小值f(1)=-6.