问题
解答题
已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n+1-1,n=1,2,3,…. (I)设bn=an+2n,n=1,2,3,…,证明数列{bn}是等比数列; (II)设cn=
|
答案
(I)∵an+1=2Sn+2n+1-1(n≥1)
当n≥2时,an=2Sn-1+2n-1
两式相减得an+1=3an+2n(n≥2)…(3分)
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2),
∵S2=3S1+22-1,即a1+a2=3a1+3,
∴a2=2a1+3=5,∴b2≠0,bn≠0,
∴
=b2 b1
=a2+4 a1+2
=3,9 3
故
=3(n=1,2,3,…),bn+1 bn
∴数列{bn}是公比为3,首项为3的等比数列.…(6分)
(II)由(I)知bn=3•3n-1=3n,b1=an2n,
∴an=3n-2n,
∴cn=
=2n (1+3n-an)(1+3n+1-an+1)
.2n (1+2n)(1+2n+1)
则cn=
=2n (1+2n)(1+2n+1)
-1 1+2n
.…(10分)1 1+2n+1
c1+c2+…+cn=
-1 1+21
+1 1+22
-1 1+22
+…+1 1+23
-1 1+2n 1 1+2n-1
=
-1 3
.…(12分)1 1+2n+1