问题 解答题
已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n+1-1,n=1,2,3,…
(I)设bn=an+2n,n=1,2,3,…,证明数列{bn}是等比数列;
(II)设cn=
2n
(1+3n-an)(1+3n+1-an+1)
,n=1,2,3,…,求c1+c2+…+cn
答案

(I)∵an+1=2Sn+2n+1-1(n≥1)

n≥2时,an=2Sn-1+2n-1

两式相减得an+1=3an+2n(n≥2)…(3分)

从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2)

S2=3S1+22-1,即a1+a2=3a1+3,

∴a2=2a1+3=5,∴b2≠0,bn≠0,

b2
b1
=
a2+4
a1+2
=
9
3
=3,

bn+1
bn
=3(n=1,2,3,…),

∴数列{bn}是公比为3,首项为3的等比数列.…(6分)

(II)由(I)知bn=3•3n-1=3nb1=an2n

an=3n-2n

cn=

2n
(1+3n-an)(1+3n+1-an+1)
=
2n
(1+2n)(1+2n+1)

cn=

2n
(1+2n)(1+2n+1)
=
1
1+2n
-
1
1+2n+1
.…(10分)

c1+c2+…+cn=

1
1+21
-
1
1+22
+
1
1+22
-
1
1+23
+…+
1
1+2n
-
1
1+2n-1

=

1
3
-
1
1+2n+1
.…(12分)

单项选择题 A1/A2型题
单项选择题