问题
解答题
已知Sn为数列{an}的前项和,且Sn=2an+n2-3n-2,n=1,2,3… (Ⅰ)求证:数列{an-2n}为等比数列; (Ⅱ)设bn=an•(-1)n,求数{bn}的n项和Pn; (Ⅲ)设cn=
|
答案
(Ⅰ)∵Sn=2an+n2-3n-2
∴Sn+1=2an+1+(n+1)2-3(n+1)-2
∴an+1=2an-2n+2
∴an+1-2(n+1)=2(an-2n)
∴{an-2n}是以2为公比的等比数列.
(II)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2
∴an-2n=2n,∴an=2n+2n …5分
当n为偶数时,
Pn=b1+b2+b3+…+bn=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-(2n-1+2(n-1)+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
-4(1-2n) 1-22
+n=2(1-2n) 1-22
•(2n-1)+n …7分2 3
当n为奇数时,
Pn=-
-(n+1)…9分2n+1+2 3
综上,Pn=
…10分-
-n-2n+1 3
(n为奇数)5 3
•(2n-1) +n(n为偶数)2 3
(III)cn=
=1 an-n
,1 2n+n
当n=1时,T1=
<1 3
;37 44
当n≥时,Tn=
+1 21+1
+1 22+2
+…+1 23+3
<1 2n+n
+1 3
+1 22
+…+1 23 1 2n
=
+1 3
=
(1-1 4
)1 2n-1 1- 1 2
+1 3
-1 2
=1 2n
-5 6
<1 2n
<5 6
.37 44
综上可知,任意n∈N*,Tn<
.…14分37 44