问题 解答题
设f1(x)=
2
1+x
,定义fn+1 (x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
(n∈N*).
(1)求数列{an}的通项公式;
(2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
4n2+n
4n2+4n+1
(n∈N*),试比较9T2n与Qn的大小,并说明理由.
答案

(1)∵f1(0)=2,a1=

2-1
2+2
=
1
4
,fn+1(0)=f1[fn(0)]=
2
1+fn(0)

∴an+1=

fn+1(0)-1
fn+1(0)+2
=
2
1+fn(0)
-1
2
1+fn(0)
+2
=
1-fn(0)
4+2fn(0)
=-
1
2
fn(0)-1
fn(0)+2
=-
1
2
an

∴数列{an}是首项为

1
4
,公比为-
1
2
的等比数列,

∴an=

1
4
-
1
2
n-1

(2)∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n

-

1
2
T2n=(-
1
2
a1)+(-
1
2
)2a2+(-
1
2
)3a3+…+(-
1
2
)(2n-1)a2n-1+(-
1
2
)
2na2n

=a2+2a3+…+(2n-1)a2n-na2n

两式相减,得

3
2
T2n=a1+a2+a3+…+a2n+na2n

3
2
T2n=
1
4
[1-(-
1
2
)
2n
]
1+
1
2
+n×
1
4
(-
1
2
2n-1=
1
6
-
1
6
(-
1
2
2n+
n
4
(-
1
2
2n-1

T2n=

1
9
-
1
9
(-
1
2
2n+
n
6
(-
1
2
2n-1=
1
9
(1-
3n+1
22n
).

∴9T2n=1-

3n+1
22n

又Qn=1-

3n+1
(2n+1)2

当n=1时,22n=4,(2n+1)2=9,∴9T2n<Q n

当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn

当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn3+…+Cnn2>(2n+1)2,∴9T2n<Qn

综上得:9T2n<Q n

填空题
单项选择题