设f1(x)=
(1)求数列{an}的通项公式; (2)若T2n=a1+2a2+3a3+…+2na2n,Qn=
|
(1)∵f1(0)=2,a1=
=2-1 2+2
,fn+1(0)=f1[fn(0)]=1 4
,2 1+fn(0)
∴an+1=
=fn+1(0)-1 fn+1(0)+2
=
-12 1+fn(0)
+22 1+fn(0)
=-1-fn(0) 4+2fn(0) 1 2
=-fn(0)-1 fn(0)+2
an.1 2
∴数列{an}是首项为
,公比为-1 4
的等比数列,1 2
∴an=
(-1 4
)n-1.1 2
(2)∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n,
∴-
T2n=(-1 2
a1)+(-1 2
)2a2+(-1 2
)3a3+…+(-1 2
)(2n-1)a2n-1+(-1 2
)2na2n1 2
=a2+2a3+…+(2n-1)a2n-na2n.
两式相减,得
T2n=a1+a2+a3+…+a2n+na2n.3 2
∴
T2n=3 2
+n×
[1-(-1 4
)2n]1 2 1+ 1 2
(-1 4
)2n-1=1 2
-1 6
(-1 6
)2n+1 2
(-n 4
)2n-1.1 2
T2n=
-1 9
(-1 9
)2n+1 2
(-n 6
)2n-1=1 2
(1-1 9
).3n+1 22n
∴9T2n=1-
.3n+1 22n
又Qn=1-
,3n+1 (2n+1)2
当n=1时,22n=4,(2n+1)2=9,∴9T2n<Q n;
当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;
当n≥3时,22n=[(1+1)n]2=(Cn0+Cn1+Cn3+…+Cnn)2>(2n+1)2,∴9T2n<Qn;
综上得:9T2n<Q n.