问题
解答题
数列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*). (1)求a2,a3的值; (2)试求λ、μ的值,使得数列{an+λn2+μn}为等比数列; (3)设数列{bn}满足:bn=
|
答案
(1)∵a1=1,an+1=2an-n2+3n,
∴a2=2a1-1+3=4,a3=2a2-4+6=10;
(2)设an+1=2an-n2+3n,可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),
即an+1=2an-λn2+(μ-2λ)n-λ-μ,
∴λ=-1,μ=2
又a1+12+1≠0
故存在λ=-1,μ=1 使得数列{an+λn2+μn}是等比数列;
(3)证明:由(2)得an-n2+n=(a1-12+1)•2n-1
∴an=2n-1+n2-n,
∴bn=
=1 an+n-2n-1 1 n2
∵
<1 n2
-2 2n-1 2 2n+1
∴n≥2时,Sn=b1+b2+b3+…+bn<1+(
-2 3
)+…+(2 5
-2 2n-1
)=1+2 2n+1
-2 3 2 2n+1
证明Sn>6n (n+1)(2n+1)
当n=2时,Sn=b1+b2=1+
=1 4 5 4
而当n≥3时,由bn=
>1 n2
-1 n
得Sn=b1+b2+b3+…+bn>1 n+1 n n+1
由2n+1>6,得1>6 2n+1
∴Sn>
对于n≥2,n∈N*都成立,6n (n+1)(2n+1)
∴n≥2时,
<Sn<6n (n+1)(2n+1)
.5 3