已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是-
(1)求f(x)的解析式; (2)设直线l:y=t2-t(其中0<t<
(3)已知m≥0,n≥0,求证:
|
(1)由二次函数图象的对称性,可设f(x)=a(x-
)2-1 2
,又f(0)=0∴a=11 4
故f(x)=x2-x.
(2)据题意,直线l与f(x)的图象的交点坐标为(t,t2-t),由定积分的几何意义知g(t)=S1(t)+
S2(t)=-1 2
[(t2-t)-(x2-x)]dx-∫ t0
[(x2-x)-(t2-t)]dx∫
t1 2
=
[(x2-x)-(t2-t)]dx+∫ t0
[(t2-t)-(x2-x)]dx∫
t1 2
=[(
-x3 3
)-(t2-t)x]x2 2
+[(t2-t)x-(| t0
-x3 3
)]x2 2 |
t1 2
=-
t3+4 3
t2-3 2
t+1 2
.1 12
而g′(t)=-4t2+3t-
=-1 2
(8t2-6t+1)=-1 2
(4t-1)(2t-1)1 2
令g′(t)=0⇒t=
,或t=1 4
(不合题意,舍去)1 2
当t∈(0,
),g′(t)<0,g(t)递减,t∈[1 4
,1 4
),g'(t)≥0,g(t)递增,1 2
故当t=
时,g(t)有最小值.1 4
(3)∵f(x)的最小值为-
∴m-1 4
≥-m
①n-1 4
≥-n
②1 4
①+②得:m+n+
≥1 2
+m
③n
又
(m+n)2+1 2
(m+n)=1 4
(m+n)(m+n+1 2
)1 2
由均值不等式和③知:
(m+n)≥1 2
;m+n+mn
≥1 2
+m n
故
(m+n)2+1 2
(m+n)=1 4
(m+n)(m+n+1 2
)1 2
≥
(mn
+m
)=mn
+nn
.m