问题 填空题

等腰直角三角形OAB内接于抛物线y2=2px(p>0),O是抛物线的顶点,OA⊥OB,则△OAB的面积为______.

答案

设等腰直角三角形OAB的顶点A(x1,y1),B(x2,y2),则y12=2px1y22=2px2

由OA=OB得:x12+y12=x22+y22

x12-x22+2px1-2px2=0,即(x1-x2)(x1+x2+2p)=0,

∵x1>0,x2>0,2p>0,

∴x1=x2,即A,B关于x轴对称.

∴直线OA的方程为:y=xtan45°=x,由

y2=2px
y=x
解得
x=0
y=0
x=2p
y=2p

故AB=4p,

∴S△OAB=

1
2
×2p×4p=4p2

故答案为:4p2

多项选择题 案例分析题
单项选择题