问题
解答题
设无穷数列{an}系:a1=1,2an+1-an=
(1)求a2,a3 (2)若bn=an-
(3)若Sn为数列{an}前n项的和,求Sn. |
答案
(1)由a1=1,2an+1-an=
(n≥1),n-2 n(n+1)(n+2)
∴2a2-a1=
,解得a2=-1 1×2×3
.5 12
同理可得a3=
.5 24
(2)由bn=an-
,代入递推式中可得:2(bn+1+1 n(n+1)
)-(bn+1 (n+1)(n+2)
)=1 n(n+1)
,n-2 n(n+1)(n+2)
∴2bn+1-bn+
-2n n(n+1)(n+2)
=n+2 n(n+1)(n+2)
,n-2 n(n+1)(n+2)
∴2bn+1=bn,且b1=a1-
=1 2
.1 2
∴数列{bn}是首项为
,公比为1 2
的等比数列.1 2
(3)由(2)可知:bn=(
)n,1 2
∴an=(
)n+1 2
=(1 n(n+1)
)n+(1 2
-1 n
)1 n+1
∴数列{an}前n项和Sn=
+1-
×[1-(1 2
)n]1 2 1- 1 2 1 n+1
=2-(
)n-1 2
.1 n+1