问题 解答题
设无穷数列{an}系:a1=1,2an+1-an=
n-2
n(n+1)(n+2)
(n≥1)
(1)求a2,a3
(2)若bn=an-
1
n(n+1)
,求证数列{bn}是等比数列
(3)若Sn为数列{an}前n项的和,求Sn
答案

(1)由a1=1,2an+1-an=

n-2
n(n+1)(n+2)
(n≥1),

2a2-a1=

-1
1×2×3
,解得a2=
5
12

同理可得a3=

5
24

(2)由bn=an-

1
n(n+1)
,代入递推式中可得:2(bn+1+
1
(n+1)(n+2)
)-(bn+
1
n(n+1)
)
=
n-2
n(n+1)(n+2)

2bn+1-bn+

2n
n(n+1)(n+2)
-
n+2
n(n+1)(n+2)
=
n-2
n(n+1)(n+2)

∴2bn+1=bn,且b1=a1-

1
2
=
1
2

∴数列{bn}是首项为

1
2
,公比为
1
2
的等比数列.

(3)由(2)可知:bn=(

1
2
)n

an=(

1
2
)n+
1
n(n+1)
=(
1
2
)n+(
1
n
-
1
n+1
)

∴数列{an}前n项和Sn=

1
2
×[1-(
1
2
)n]
1-
1
2
+1-
1
n+1

=2-(

1
2
)n-
1
n+1

选择题
名词解释