已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(Ⅲ)设cn=logaa2n-1,求数列{a2n•cn}的前n项和Tn.
(I)∵Sn=a(Sn-an+1)
∴Sn-1=a(Sn-1-an-1+1)(n≥2)
两式相减可得,Sn-Sn-1=a(Sn-an+1-Sn-1+an-1-1)(n≥2)
即an=a[(Sn-Sn-1)-an+an-1]=a•an-1
∴
=a(n≥2)an an-1
∵S1=a(s1-a1+1)
∴a1=a
∴数列{an}是以a为首项以a为公比的等比数列
∴an=an
(II)∵Sn=a(Sn-an+1)
∴Sn=a×1-an 1-a
∴bn=an2+Sn•an=an(an+
)a(1-an) 1-a
∵bn为等比数列∴b22=b1b3
∴a4[a2+
] 2=2a2•a3[a3+a(1-a2) 1-a
]a(1-a3) 1-a
∵a≠0,a≠1
解可得a=1 2
(III)∵Cn=logaa2n-1=2n-1,a2n•Cn=(2n-1)•a2n
∴Tn=a2+3a4+…+(2n-1)a2n
a2Tn=a4+3a6+…+(2n-3)a2n+(2n-1)•a2n+2
两式相减可得,(1-a2)Tn=a2+2(a4+a6+…+a2n)-(2n-1)•a2n+2
=a2+
-(2n-1)•a2n+22a4(1-a2n-2) 1-a2
∴Tn=a2(1+a2)-(2n+1)•a2n+2+(2n+1)•a2n+4 (1-a2) 2