问题
填空题
(文科)设抛物线y2=4x的焦点为F,经过点P(2,1)的直线与抛物线交于A、B两点,又知点P恰好为AB的中点,则|AF|+|BF|的值是______.
答案
设A(x1,y1),B(x2,y2),作出抛物线的准线:x=-1,过A、B分别作准线的垂线,垂足分别为C、D,
根据抛物线的定义,得
|AF|=|AC|=x1+1,|BF|=|BD|=x2+1,故|AF|+|BF|=(x1+x2)+2
∵AB中点为P(1,2),
∴
(x1+x2)=2,可得x1+x2=41 2
∴|AF|+|BF|=(x1+x2)+2=6
故答案为:6