问题
解答题
已知数列{an}满足:a1=2且an+1=
(1)求证:数列{
(2)证明:
|
答案
(本小题满分14分)
(1)由题得:an+1(an+n)=2(n+1)an,
即anan+1+nan+1=2(n+1)an,
故2(
-1)=n+1 an+1
-1即数列{n an
-1}为等比数列,…(3分)n an
∴
-1=(-n an
)(1 2
)n-1=-(1 2
)n,1 2
∴an=n+
…(7分)n 2n-1
(2)由(1)知
=1+an n
…(8分)1 2n-1
∴
+a1 1
+a2 2
+…+a3 3
≤n+an n
+1 20
+1 21
+…+1 22 1 2n-1
…(14分)=n+ [1-(
)n]1 2 1- 1 2 =n+2-(
)n-11 2 <n+2