问题
解答题
已知数列{an}满足a1=
(1)求a2•a3的值; (2)证明数列{an-2n}是等比数列,并求出数列{an}的通项公式; (3)若数列{bn}满足
|
答案
(1)∵a2=3a1-4+2=3×
-2=5,a3=3a2-4×2+2=3×5-6=9.7 3
∴a2a3=5×9=45.
(2)∵an+1=3an-4n+2(n∈N*),∴an+1-2(n+1)=3(an-2n),
又a1-2=
,∴数列{an-2n}是首项为1 3
,且公比为3的等比数列.1 3
∴an-2n=
×3n-1,于是数列{an}的通项公式为an=2n+3n-2(n∈N*).1 3
(3)由
=1+2bn bn
,∴an n
+2=2+1 bn
,得bn=3n-2 n
.n 3n-2
∴Sn=3+
+2 1
+3 3
+…+4 32
①n 3n-2
于是
Sn=1+1 3
+2 3
+…+3 32
+n-1 3n-2
②n 3n-1
由①-②得
Sn=3+1+2 3
+1 3
+…+1 32
-1 3n-2
=n 3n-1
-3[1-(
)n]1 3 1- 1 3
=n 3n-1
[1-(9 2
)n]-1 3
,n 3n-1
∴Sn=
[1-(27 4
)n]-1 3
.n 2×3n-2