问题 解答题
已知数列{an}满足a1=
7
3
,an+1=3an-4n+2(n∈N*
(1)求a2•a3的值;
(2)证明数列{an-2n}是等比数列,并求出数列{an}的通项公式;
(3)若数列{bn}满足
1+2bn
bn
=
an
n
(n∈N*),求数列{bn}的前n项和Sn
答案

(1)∵a2=3a1-4+2=

7
3
-2=5,a3=3a2-4×2+2=3×5-6=9.

∴a2a3=5×9=45.

(2)∵an+1=3an-4n+2(n∈N*),∴an+1-2(n+1)=3(an-2n),

a1-2=

1
3
,∴数列{an-2n}是首项为
1
3
,且公比为3的等比数列.

an-2n=

1
3
×3n-1,于是数列{an}的通项公式为an=2n+3n-2(n∈N*)

(3)由

1+2bn
bn
=
an
n
,∴
1
bn
+2=2+
3n-2
n
,得bn=
n
3n-2

Sn=3+

2
1
+
3
3
+
4
32
+…+
n
3n-2
  ①

于是

1
3
Sn=1+
2
3
+
3
32
+…+
n-1
3n-2
+
n
3n-1
  ②

由①-②得

2
3
Sn=3+1+
1
3
+
1
32
+…+
1
3n-2
-
n
3n-1
=
3[1-(
1
3
)n]
1-
1
3
-
n
3n-1
=
9
2
[1-(
1
3
)n]-
n
3n-1

Sn=

27
4
[1-(
1
3
)n]-
n
3n-2

单项选择题 B型题
单项选择题