问题
解答题
已知数列{an}满足a1=1,a2=3,an+1=4an-3an-1(n∈N*且n≥2). (Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式; (Ⅱ)设数列{bn}的前n项和为Sn,且对一切n∈N*,都有
|
答案
(I)证明:由an+1=4an-3an-1可得an+1-an=3(an-an-1)
所以数列{an+1-an}是以2为首项,3为公比的等比数列 …(3分)
故有an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=
+1=3n-1…(6分)2(1-3n-1) 1-3
(II)由
+b1 a1
+…+b2 2a2
=2n+1可知bn nan
当n=1时,
=3,b1=3,S1=3b1 a1
当n≥2时,
=2n+1-(2n-1)=2,bn=2n×3n-1…(8分)Sn=b1+b2+…+bn=3+2×2×3+2×3×32+…2×n×3n-1bn nan
=2(1×30+2×31+3×32+…n×3n-1)+1
设x=1×30+2×31+3×32+…+n×3n-1
3x=1×31+2×32+…+(n-1)×3n-1+n×3n
∴2x=n×3n-(3n-1+3n-2+…30)=n×3n-
Sn=(n-3n-1 2
)×3n+1 2
…(11分)3 2
综上Sn=(n-
)×3n+1 2
,n∈N*…(12分)3 2