问题 解答题
已知数列{an}满足a1=1,a2=3,an+1=4an-3an-1(n∈N*且n≥2)
(Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn,且对一切n∈N*,都有
b1
a1
+
b2
2a2
+…+
bn
nan
=2n+1
成立,求Sn
答案

(I)证明:由an+1=4an-3an-1可得an+1-an=3(an-an-1

所以数列{an+1-an}是以2为首项,3为公比的等比数列 …(3分)

故有an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=

2(1-3n-1)
1-3
+1=3n-1…(6分)

(II)由 

b1
a1
+
b2
2a2
+…+
bn
nan
=2n+1可知

当n=1时,

b1
a1
=3,b1=3,S1=3

当n≥2时,

bn
nan
=2n+1-(2n-1)=2,bn=2n×3n-1…(8分)Sn=b1+b2+…+bn=3+2×2×3+2×3×32+…2×n×3n-1

=2(1×30+2×31+3×32+…n×3n-1)+1

设x=1×30+2×31+3×32+…+n×3n-1

3x=1×31+2×32+…+(n-1)×3n-1+n×3n

∴2x=n×3n-(3n-1+3n-2+…30)=3n-

3n-1
2
Sn=(n-
1
2
3n+
3
2
…(11分)

综上Sn=(n-

1
2
3n+
3
2
,n∈N*…(12分)

选择题
单项选择题 A1/A2型题