问题 解答题
在数列{an}中,a1=1,an+an+1=3n.设bn=an-
1
4
×3n

(1)求证:数列{bn}是等比数列
(2)求数列{an}的前n项的和
(3)设T2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
…+
1
a2n
,求证:T2n<3.
答案

证明:(1)由a1=1,an+an+1=3n

an+1=

1
4
×3n+1=-(an-
1
4
×3n)

bn+1=-bnb1=a1-

3
4
=
1
4

∴数列{bn}是首项为

1
4
,公比为-1的等比数列.

(2)由bn=

1
4
×(-1)n-1

an-

1
4
× 3n =
1
4
×(-1)n-1

an=

1
4
×3n+
1
4
×(-1)n-1=
1
4
×[3n+(-1) n-1]

Sn=[3+32+33+…+3n+(-1)0+(-1)1+(-1)1+(-1)2+…+(-1)n-1]

=

1
4
[
3n+1-3
2
+
1+(-1)n+1
2
].

证明:(3)T2n=

1
a1
+
1
a2
+
1
a3
+…+
1
a2n-1
+
1
a2n

=4(

1
3+1
+
1
3 2-1
+
1
3 3+1
+
1
3 4-1
…+
1
3 2n-1+1
+
1
3 2n-1
)

=4[(

1
3+1
+
1
3 3+1
+…+
1
3 2n-1+1
)+(
1
3 2-1
+
1
3 4-1
+…+
1
3 2n-1
)]

4[(

1
3
+
1
3 3
+…+
1
3 2n-1
)+(
1
3 2-1
+
1
3 4-1
+…+
1
3 2n-1
)]

∵32n-1>32n-1,(n∈N*),

1
3 2n-1
1
3 2n-1
,(n∈N*),

T2n<8(

1
3
+
1
3 2
+…+
1
3 2n-1
)

=

1
3
(1-
1
9n
)
1-
1
9

=3(1-

1
9n
)<3.

单项选择题 A1/A2型题
单项选择题