问题
解答题
在数列{an}中,a1=1,an+an+1=3n.设bn=an-
(1)求证:数列{bn}是等比数列 (2)求数列{an}的前n项的和 (3)设T2n=
|
答案
证明:(1)由a1=1,an+an+1=3n,
得an+1=
×3n+1=-(an-1 4
×3n),1 4
即bn+1=-bn•b1=a1-
=3 4
.1 4
∴数列{bn}是首项为
,公比为-1的等比数列.1 4
(2)由bn=
×(-1)n-1,1 4
得an-
× 3n =1 4
×(-1)n-1,1 4
an=
×3n+1 4
×(-1)n-1=1 4
×[3n+(-1) n-1]1 4
Sn=[3+32+33+…+3n+(-1)0+(-1)1+(-1)1+(-1)2+…+(-1)n-1]
=
[1 4
+3n+1-3 2
].1+(-1)n+1 2
证明:(3)T2n=
+1 a1
+1 a2
+…+1 a3
+1 a2n-1 1 a2n
=4(
+1 3+1
+1 3 2-1
+1 3 3+1
…+1 3 4-1
+1 3 2n-1+1
)1 3 2n-1
=4[(
+1 3+1
+…+1 3 3+1
)+(1 3 2n-1+1
+1 3 2-1
+…+1 3 4-1
)]1 3 2n-1
<4[(
+1 3
+…+1 3 3
)+(1 3 2n-1
+1 3 2-1
+…+1 3 4-1
)]1 3 2n-1
∵32n-1>32n-1,(n∈N*),
∴
<1 3 2n-1
,(n∈N*),1 3 2n-1
∴T2n<8(
+1 3
+…+1 3 2
)1 3 2n-1
=8×
(1-1 3
)1 9n 1- 1 9
=3(1-
)<3.1 9n