问题
解答题
已知函数f(x)=log2x,设f(a1),f(a2),f(a3),…,f(an),…,(n∈N*)是首项和公差都等于1的等差数列.数列{bn}满足bn=an+3n(n∈N*). (1)求数列{an}的通项公式,并证明数列{bn}不是等比数列; (2)令cn=
|
答案
(1)由题意可得 f(an)=n=log2an,∴an=2n,故数列{an}是等比数列.
假设数列{bn}是等比数列,bn=2n+3n,则有 b22=b1b3.
由因为 b22=132,b1b3=5×35,∴b22≠b1b3,与假设矛盾,所以假设不成立.
∴数列{bn}不是等比数列.(6分)
(2)∵cn=
,Sn=c1+c2+c3+…+cn,2n-1 an
∴Sn=
+1 2
+3 22
+…+5 23
+2n-3 2n-1
,…①2n-1 2n
∴
Sn=1 2
+1 22
+3 23
+…+5 24
+2n-3 2n
,…②,2n-1 2n+1
①-②得
Sn=1 2
+1 2
+2 22
+2 23
+…+2 24
-2 2n 2n-1 2n+1
=
+(1 2
+1 21
+1 22
+…+1 23
)-2 2n-1 2n-1 2n+1
=
,
+1 2
-
[1-(1 2
)n-1]1 2 1- 1 2
=2n-1 2n+1
+1-(1 2
)n-1-1 2
=2n-1 2n+1
-3 2 2n+3 2n+1
∴Sn=3-
<3.(12分)2n+3 2n