问题 选择题
已知正项等比数列{an}满足2a5=a7-a6,且存在两项an,am满足
anam
=4a1
,则
4
n
+
1
m
的最小值为(  )
A.
25
6
B.
5
3
C.
3
2
D.
2
3
答案

∵正项等比数列{an}满足2a5=a7-a6,∴2a5=a5q2-a5q,q>0,化为q2-q-2=0,解得q=2.

∵存在两项an,am满足

anam
=4a1,∴
a1qn-1a1qm-1
=4a1,化为2n+m-2=24,∴n+m=6.

4
n
+
1
m
=
1
6
(n+m)(
4
n
+
1
m
)
=
1
6
(5+
n
m
+
4m
n
)≥
1
6
(5+2
n
m
×
4m
n
)
=
3
2
.当且仅当
n
m
=
4m
n
,m+n=6即m=2,n=4时取等号.

4
n
+
1
m
的最小值为
3
2

故选C.

单项选择题
判断题