问题
解答题
已知{an}是公比大于1的等比数列,它的前3项和S3=7,且a1+3、3a2、a3+4构成等差数列. (I)求数列{an}的通项公式; (II)令bn=
|
答案
(I)由已知得:
,解得a2=2,a1+a2+a3=7
=3a2(a1+3)+(a3+4) 2
设数列{an}的公比为q,由a2=2,可得a1=
,a3=2q,2 q
又S3=7,可知2q2-5q+2=0,解得q1=2,q2=
,1 2
由题意得q>1,∴q=2.∴a1=1,故数列{an}的通项为an=2n-1;
(II)由于bn=
=5 (log222n-1)(log222n+1)
=5 (2n-1)(2n+1)
(5 2
-1 2n-1
),Tn=1 2n+1
(5 2
-1 1
)+1 3
(5 2
-1 3
)+…+1 5
(5 2
-1 2n-1
)=1 2n+1
,5n 2n+1
∵
=5n 2n+1
=n+
-1 2 1 2 2n+1
-5 2
<5 4n+2
,5 2
∴使Tn<m成立的整数m的最小值是3.