问题
解答题
数列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*). (Ⅰ)试求λ、μ的值,使得数列{an+λn2+μn}为等比数列; (Ⅱ)设数列{bn}满足:bn=
|
答案
(Ⅰ)若{an+λn2+μn}为等比数列,
则存在q≠0,使an+1+λ(n+1)2+μ(n+1)=q(an+λn2+μn)对∀n∈N*成立.
由已知:an+1=2an-n2+3n,代入上式,
整理得(q-2)an+(λq-λ+1)n2+(μq-2λ-μ-3)n-λ-μ=0①
∵①式对∀n∈N*成立,
∴q-2=0 λq-λ+1=0 μq-2λ-μ-3=0 -λ-μ=0
解得q=2 λ=-1 μ=1
∴当λ=-1,μ=1时,数列{an+λn2+μn}是公比为2的等比数列;
(Ⅱ)证明:由(Ⅰ)得:an-n2+n=(a1-12+1)•2n-1,即an=2n-1+n2-n
所以bn=
=1 an+n-2n-1 1 n2
∵bn=
<1 n2
=1 n2- 1 4
-1 n- 1 2 1 n+ 1 2
n≥2时,sn=b1+b2+b3+…+bn<1+(
-1 3 2
)+(1 5 2
-1 5 2
)+…+(1 7 2
-1 n- 1 2
)=1+1 n+ 1 2
-2 3
<1 n+ 1 2
(1)5 3
现证:Sn>
(n≥2)6n (n+1)(2n+1)
n≥2时,
n(n+1)(2n+1)sn=(12+22+32+…+n2)(1 6
+1 12
+1 22
+…+1 32
)>(1+1+1+…+1)2(n个1)=n21 n2
∴Sn>
(2)6n (n+1)(2n+1)
根据(1)(2)可知
>Sn>5 3
对于n≥2,n∈N*都成立.6n (n+1)(2n+1)