问题 解答题
数列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*).
(Ⅰ)试求λ、μ的值,使得数列{an+λn2+μn}为等比数列;
(Ⅱ)设数列{bn}满足:bn=
1
an+n-2n-1
,Sn为数列{bn}的前n项和,证明:n≥2时,
6n
(n+1)(2n+1)
Sn
5
3
答案

(Ⅰ)若{an+λn2+μn}为等比数列,

则存在q≠0,使an+1+λ(n+1)2+μ(n+1)=q(an+λn2+μn)对∀n∈N*成立.

由已知:an+1=2an-n2+3n,代入上式,

整理得(q-2)an+(λq-λ+1)n2+(μq-2λ-μ-3)n-λ-μ=0①

∵①式对∀n∈N*成立,

q-2=0
λq-λ+1=0
μq-2λ-μ-3=0
-λ-μ=0

解得

q=2
λ=-1
μ=1

∴当λ=-1,μ=1时,数列{an+λn2+μn}是公比为2的等比数列;

(Ⅱ)证明:由(Ⅰ)得:an-n2+n=(a1-12+1)•2n-1,即an=2n-1+n2-n

所以bn=

1
an+n-2n-1
=
1
n2

bn=

1
n2
1
n2-
1
4
=
1
n-
1
2
-
1
n+
1
2

n≥2时,sn=b1+b2+b3+…+bn<1+(

1
3
2
-
1
5
2
)+(
1
5
2
-
1
7
2
)
+…+(
1
n-
1
2
-
1
n+
1
2
)
=1+
2
3
-
1
n+
1
2
5
3
(1)

现证:Sn

6n
(n+1)(2n+1)
(n≥2)

n≥2时,

1
6
n(n+1)(2n+1)sn=(12+22+32+…+n2)(
1
12
+
1
22
+
1
32
+…+
1
n2
)>(1+1+1+…+1)2(n个1)=n2

Sn

6n
(n+1)(2n+1)
(2)

根据(1)(2)可知

5
3
Sn
6n
(n+1)(2n+1)
对于n≥2,n∈N*都成立.

问答题 简答题
单项选择题