问题 解答题
数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设a=
3
4
c=-
1
4
cn=
3+an
2-an
.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:Tn
5
3
(n∈N*).
答案

(1)证明:∵an+1=can+1-c,∴an+1-1=c(an-1)

∴a≠1时,{an-1}等比数列.

∵a1-1=a-1,∴an-1=(a-1)cn-1,∴an=(a-1)cn-1+1

(2)由(1)可得an=-

1
2
(
1
2
)
n-1
+1=-(
1
2
)n+1

bn=n•(

1
2
)n

∴Sn=1•

1
2
+2•(
1
2
)2+…+n•(
1
2
)n

1
2
Sn=1•(
1
2
)2+2•(
1
2
)
3
+…+(n-1)•(
1
2
)n+n•(
1
2
)
n+1

两式相减可得

1
2
Sn=
1
2
+(
1
2
)
2
+(
1
2
)
3
+…+(
1
2
)
n
-n•(
1
2
)
n+1
=1-
n+2
2n+1

Sn=2-

n+2
2n

(3)证明:Cn=4+

5
(-4)n-1

dn=

25×16n
(16n-1)(16n+4)
=
25×16n
(16n)2+3×16n-4
25×16n
(16n)2
25
16n

Tn=d1+d2+…+dn<25(

1
16
+
1
162
+
1
163
+…+
1
16n
)=
25×
1
16
(1-(
1
16
)
n
)
1-
1
16
=
5
3
(1-
1
16n
)<
5
3

填空题
单项选择题