问题 解答题
在数列{an},{bn}是各项均为正数的等比数列,设cn=
bn
an
(n∈N*)

(Ⅰ)数列{cn}是否为等比数列?证明你的结论;
(Ⅱ)设数列{lnan},{lnbn}的前n项和分别为Sn,Tn.若a1=2,
Sn
Tn
=
n
2n+1
,求数列{cn}的前n项和.
答案

(Ⅰ){cn}是等比数列.

证明:设{an}的公比为q1(q1>0),{bn}的公比为q2(q2>0),

cn+1
cn
=
bn+1
an+1
an
bn
=
bn+1
bn
an
an+1
=
q2
q1
≠0,故{cn}为等比数列.

(Ⅱ)数列{lnan}和{lnbn}分别是公差为lnq1和lnq2的等差数列.

由条件得

nlna1+
n(n-1)
2
lnq1
nlnb1+
n(n-1)
2
lnq2
=
n
2n+1
,即
2lna1+(n-1)lnq1
2lnb1+(n-1)lnq2
=
n
2n+1

故对n=1,可得

lna1
lnb1
=
1
3
,又a1=2,可得b1=8,

于是

2lna1+(n-1)lnq1
2lnb1+(n-1)lnq2
=
n
2n+1
可变为

(2lnq1-lnq2)n2+(4lna1-lnq1-2lnb1+lnq2)n+(2lna1-lnq1)=0对任意的正整数n恒成立

于是

2lnq1-lnq2=0
4lna1-lnq1-2lnb1+lnq2=0
2lna1-lnq1=0.

将a1=2代入得q1=4,q2=16,b1=8.

从而有cn=

8•16n-1
2•4n-1
=4n.所以数列{cn}的前n项和为4+42++4n=
4
3
(4n-1)

问答题
单项选择题