已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2).
(1)求证:{an+1+2an}是等比数列;
(2)求数列{an}的通项公式;
(3)设3nbn=n(3n-an),且|b1|+|b2|++|bn|<m对于n∈N*恒成立,求m的取值范围.
(1)由an+1=an+6an-1,an+1+2an=3(an+2an-1)(n≥2)
∵a1=5,a2=5∴a2+2a1=15
故数列{an+1+2an}是以15为首项,3为公比的等比数列(5分)
(2)由(1)得an+1+2an=5•3n由待定系数法可得(an+1-3n+1)=-2(an-3n)
即an-3n=2(-2)n-1故an=3n+2(-2)n-1=3n-(-2)n(9分)
(3)由3nbn=n(3n-an)=n[3n-3n+(-2)n]=n(-2)n,
∴bn=n(-)n
令Sn=|b1|+|b2|+…+|bn|
=(-)+2()2+3()3+…+n()nSn
=()2+2()3+…+(n-1)()n+n()n+1(11分)
得Sn=+()2+()3+…+()n-n()n+1
=-n()n+1
=2[1-()n]-n()n+1
∴Sn=6[1-()n]-3n()n+1<6
要使得|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,只须m≥6(14分)