问题
解答题
已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,… (1)证明:数列{lg(1+an)}是等比数列,并求数列{an}的通项公式; (2)记bn=
|
答案
(1)证明:由已知an+1=
+2an,∴an+1+1=(an+1)2,a 2n
∵a1=2,∴an+1>1,两边取对数得 lg(1+an+1)=2lg(1+an),即
=2,lg(1+an+1) lg(1+an)
∴{lg(1+an)}是公比为2的等比数列.
∴lg(1+an)=2n-1•lg(1+a1)=2n-1•lg3=lg32n-1,
∴1+an=32n-1(*).
由(*)式得an=32n-1-1.
(2)∵an+1=
+2an,a 2n
∴an+1=an(an+2),
∴
=1 an+1
(1 2
-1 an
),1 an+2
∴
=1 an+2
-1 an
,2 an+1
又bn=
+1 an
,1 an+2
∴bn=2(
-1 an
).1 an+1
∴Sn=b1+b2+…+bn
=2(
-1 a1
+1 a2
-1 a2
+…+1 a3
-1 an
)1 an+1
=2(
-1 a1
).1 an+1
∵an=32n-1-1,a1=2,an+1=32n-1,
∴Sn=1-
.2 32n-1