问题 解答题
在数列an中,已知a1=1,an=2an-1+n-2,n∈N*,n≥2.
(1)求证:数列an+n是等比数列;     (2) 求数列{
an
2n
}
的前n项和为Sn
答案

(1)∵an=2an-1+n-2,

∴an+n=2(an-1+n-1)    

∴数列{an+n}是以a1+1=2为首项,以2为公比的等比数列;

(2)有(1)知:an+n=2n即:an=2n-n,

an
2n
=1-
n
2n

Sn=(1-

1
2
)+(1-
2
22
)+(1-
3
23
)+…+(1-
n
2n
)
=n-(
1
21
+
2
22
+
3
23
+…+
n
 2n
)

Tn=

1
21
+
2
22
+
3
22
+…+
n
2n

1
2
Tn=
1
21
+(
1
22
+
1
23
+…+ 
1
2n
)-
n
2n+1

①-②得:

1
2
Tn=
1
21
+(
1
22
+
1
23
+…+
1
2n
)-
n
2n+1
=
1
2
[1-(
1
2
)
n
]
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

Tn=2-

1
2n+1
-
n
2n

Sn=n-2+

1
2n+1
+
n
2n

选择题
多项选择题