问题
解答题
在数列an中,已知a1=1,an=2an-1+n-2,n∈N*,n≥2. (1)求证:数列an+n是等比数列; (2) 求数列{
|
答案
(1)∵an=2an-1+n-2,
∴an+n=2(an-1+n-1)
∴数列{an+n}是以a1+1=2为首项,以2为公比的等比数列;
(2)有(1)知:an+n=2n即:an=2n-n,
∴
=1-an 2n n 2n
∴Sn=(1-
)+(1-1 2
)+(1-2 22
)+…+(1-3 23
)=n-(n 2n
+1 21
+2 22
+…+3 23
)n 2n
令Tn=
+1 21
+2 22
+…+3 22
①n 2n
则
Tn=1 2
+(1 21
+1 22
+…+ 1 23
)-1 2n
②n 2n+1
①-②得:
Tn=1 2
+(1 21
+1 22
+…+1 23
)-1 2n
=n 2n+1
-
[1-(1 2
)n]1 2 1- 1 2
=1-n 2n+1
-1 2n
.n 2n+1
∴Tn=2-
-1 2n+1
,n 2n
∴Sn=n-2+
+1 2n+1
.n 2n