问题
填空题
设A、B是抛物线y2=x上的两点,O为原点,且OA⊥OB,则直线AB必过定点______.
答案
设点A,B的坐标分别为(x1,y1),(x2,y2)
(1)当直线l有存在斜率时,设直线方程为y=kx+b,显然k≠0且b≠0.(2分)
联立方程得:
消去y得k2x2+(2kb-1)x+b2=0y=kx+b y2=x
由题意:x1x2=
,y1xy2=b2 k2
(5分)b k
又因为OA⊥OB,所以x1x2+y1y2=0,(7分)
即
+b2 k2
=0,b k
解得b=0(舍去)或b=-k(9分)
故直线l的方程为:y=kx-k=k(x-1),故直线过定点(1,0)(11分)
(2)当直线l不存在斜率时,设它的方程为x=m,显然m>0
联立方程得:
解得 y=±x=m y2=x
,即y1y2=-mm
又因为OA⊥OB,所以可得x1x2+y1y2=0,即m2-m=0,解得m=0(舍去)或m=1
可知直线l方程为:x=1,故直线过定点(1,0)
综合(1)(2)可知,满足条件的直线过定点(1,0).
故答案为:(1,0).